
N U M E R I C A L  S I M U L A T I O N  O F  A R E L A T I V I S T I C  

B E A M  IN A M E T A L L I C  D R I F T  T U B E  

N. I .  S a b l i n  a n d  T.  A~ 8 c l o d  

E L E C T R O N  

UDC 518.12:537.5 

1. We will attempt to solve the problem of numerical  simulation of the motion of a continuous cyl indrical  
high cur ren t  relat ivist ic  electron beam in an exter ior  infinite longitudinal magnetic field (motion of a "magne-  
tized" beam) by the "cur ren t  tube" method. The geometry  of the problem can be represented  by a closed meta l -  
lie cylinder (Fig. 1), at the input of which there enters through a foil t ransparent  to electrons an electron beam 
of radius r b with uniform density and initial velocity Vz0. 

The mathematical  model consists  of a system composed of the Poisson equation and the equations of 
motion of the relat ivis t ic  electrons in a vacuum: 

l a aO a=~ = - - 4 a p ;  (1.1) 
7 -  o-7-r Or q az ~ " 

d P  z e dz  O0  
- -  ~n ~ S~,  d"-[ = v~, P~ = v J V ' - ~ -  v2z/c 2, E, = -- T/'z" (1.2) 

Boundary conditions for  determinat ion of the potential �9 are  specified in the fo rm 

~r~/~=0:0 ,  * I ~ = o , L = O O I ~ = ~ = O .  (1.3) 

The space charge density O needed to close sys t em (1.1)-(1.3) will be determined by the cur rent  tube method. 

Integration of Eqs. (1.1), (1.2) is performed in a rectang~alar region 

D =  - - ~ - ~ . ~ r ~ R ,  0 ~ z ~ L ,  ~Oh~={(r~,zj), i = 0 ,  n, ] = 0 ,  m} 

with steps in radius - {h~, h 2 . . . . .  hi, . . . .  hn} and in coordinate z - {ll, l 2 . . . . .  lj . . . . .  lm}. 

Equation (1.1) with boundary conditions (1.3) is integrated by the " t ransverse"  drive method [1]. The i te r -  
ation pattern used has the form 

O ~+~ - -  •  ~+* = F ~, F ~ = O ~ + x A ~ O  ~ + x ] ,  ( 1 . 4 )  

2 where x = Imin/2, /rain = min lj; 
O._<j..<m 

r i_  1 r i+l  
t + r - - 7 - -  " 2 ~ § q 

2 2 (P~5 -f- 2 

~0j = ~lj, ~nj = ~}i0 = Oim = 0. 

The transit ion f rom the v-th i teration to the (v + 1)-th is achieved by sequential application of the drive 
method along lines for  the three-point  Eqs. (1.4). 

The electr ic  field intensity E z is calculated with the following formulas:  

f 40~I -- 3%0 - -  Oi~ 
--  2l I , ] = 0 ,  l l= l~ ,  

@ij+ -- @~j- 
~ z o =  ~--2min{lj, lj+l}' ] = t '  m - - t ,  

[ 30~m -~- Oi ,m_ ~ - -  4Oi,rn_ I 
2/m , ] = m ,  l m - t  = lm~ 

Tomsk. Translated from Zhurnal Prildadnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 9-13, Septem- 
ber-October, 1981. Original article submitted June !0, 1980. 

602 0021-8944/81/2205-0602507.50 �9 1982 Plenum Publishing Corporation 



0 20 40 L=5Oz, 

Fig. 1 

CI~] j-~ 

k -  / 

t 

; :+,~ ;'+2 

~s I . j  
lkA 

O, 08 ~8 

40 

�9 I i 

i I : 

!20 200 s 

Fig .  2 F ig .  3 

@u+ ----- (I)(r~, z~ ~- lj), �9 u_ = O(ri, z] - -  lj+l) , 

w h i l e  the  va lue s  of + i j+ ,  ~ i j -  at  lj ~ /j+l a r e  d e t e r m i n e d  by i n t e r p o l a t i o n .  

The equa t ions  of mo t ion  a r e  i n t e g r a t e d  by the E u l e r  me thod  wi th  c a l c u l a t i o n  to s e c o n d - o r d e r  a c c u r a c y  in 
% whi le  7 = A T / k m  = c o n s t  (AT = L / v z 0 ,  k -> 2 is  an i n t ege r ) .  

To c a l c u l a t e  the s p a c e  c h a r g e  d e n s i t y  we wi l l  e m p l o y  the method  of s p r e a d i n g  o v e r  a r e a s ,  the e s s e n c e  
of which  is the  fo l lowing.  

t t t 
Le t  (rk,  Zk) , (rk_ , Zk) , (rk+ , z k) (Fig.  2) be the  c o o r d i n a t e s  of the  c u r r e n t  tube t r a j e c t o r y  and the l o w e r  

and u p p e r  l i m i t s  of the v o l u m e  of the  k - t h  tube at  the  m o m e n t  in t i m e  wi th  s u b s c r i p t  t; q~ is  the  c h a r g e  c e n t e r e d  
in  the  v o l u m e  V~, l i m i t e d  by c y l i n d r i c a l  s u r f a c e s  wi th  r a d i i  r = rk+ , r = r k_ and the p lanes  z = z t ,  z = zt.+l; 

t Vki j is  the  t o r o i d a l  v o l u m e  f o r m e d  by the  i n t e r s e c t i o n  of the  v o l u m e  V k and the v o l u m e  Vij g e n e r a t e d  by the 

c e l l  n e t w o r k  (i, j ) ,  i . e . ,  V~u = V~ ~Q Vi~. 

The s p a c e  c h a r g e  d e n s i t y  at  the  nodes  of the  g r id  is  g iven  by the f o r m u l a  

pt j  = ! ~ V t o t 
Vii. ~ ~ ; ,  .~, (1.5) 

t t t 
w h e r e  p ~ = q k / V k .  The s u m  in Eq. (1.5) is  t aken  o v e r  a l t k a n d t  f o r w h i e h V  j ~ 0. 

This  method  is  m o r e  e c o n o m i c a l  in c o m p a r i s o n  to poin t  s p r e a d i n g  me thods  [2] and the  me thod  of s p r e a d -  
ing o v e r  a r e a s  d e s c r i b e d  in [3], in which  the  c u r r e n t  tube is  d iv ided  into  s o - e a l l e d  " i n c o m p r e s s i b l e  n l a r g e  p a r -  
t i c t e s ,  hav ing  points  of the  c u r r e n t  tube as t h e i r  c o o r d i n a t e s .  F o r  so lu t i on  of the  s t a t i o n a r y  p r o b l e m  of Eqs .  
{1.1)-(1.3) we u s e  the  i t e r a t i o n  p r o c e s s  of [2]: 

V20,+1 = __4~p~ p~+l = o~s+l  ~ (I - -  ~0s)ps , s = 0~ i ,  2 ..... ; (1.6) 

w h e r e  w s is  the  s e q u e n c e  of r e l a x a t i o n  p a r a m e t e r s ;  ~s+1 is  the  s p a c e  c h a r g e  d e n s i t y  c a l c u l a t e d  wi th  Eq. (1.5). 
_s+l sj 

The i nd i ca t ed  i t e r a t i o n  p r o c e d u r e  is  r e p e a t e d  unt i l  the  i n e q u a l i t y  I ~ i j  - �9 I -< e is  s a t i s f i e d .  

N u m e r i c a l  c a l c u l a t i o n s  f o r  c u r r e n t s  above  the c r i t i c a l  va lue  r e v e a l e d  tha t  one m a y  u s e  the e s t a b l i s h m e n t  
of c u r r e n t  o s c i l l a t i o n s  at  the  s y s t e m  output  as a c r i t e r i o n  of c o n v e r g e n c e  fo r  the  i t e r a t i o n  p r o c e s s .  

F o r  input  c u r r e n t s  s u b c r i t i c a l  fo r  the  given g e o m e t r y  we c h o o s e  Ws = 1. F o r  c u r r e n t s  above  c r i t i c a l ,  at 
w s = 1 the  p r o c e s s  of Eq. (1.6) does  not  c o n v e r g e ,  s i n c e  in v a r i o u s  a p p r o x i m a t i o n s  the  t r a j e c t o r i e s  f i r s t  r e a c h  
the  r i g h t  s i de  of the  c y l i n d e r ,  but then c i r c u l a t e .  T h e r e f o r e  i t  is  n e c e s s a r y  to d e c r e a s e  the  s p a c e  c h a r g e  d e n -  
s i t y ,  e s p e c i a l l y  in the  f i r s t  a p p r o x i m a t i o n s ,  fo r  wh ich  p u r p o s e  we c h o o s e  w s << 1. 

2. In the  c a l c u l a t i o n s  the  fo l lowing  i n i t i a l  d a t a  was  used :  

R = 4,6 cm, r b = 2 cm, L = 50 cm, vzo/c = 0,94~ 

n =  28, n b = 2 L  m = 5 0 ,  

12~ = t ( /~  - -  r ~ ) / ( n  - -  J~b), ~ = n ~  § t ,  n .  

F o r  the  i n i t i a l  a p p r o x i m a t i o n  

p0 = I+/ar~vzo 

was chos  en. 
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The convergence of the tube method for currents below critical (I+ = 5 kA) was established in five iter- 

ations. For currents above critical (I§ = 20 kA) the form of the electron beam density in the plane (r, z) is 

shown in Fig. I. In this case 

0,5Lira,  ] = f ,  m/2 ,  

lj = (] ,5L/ra,  ] = m/2  -F i ,  m.  

A total of 233 iterations of process (1.6) were performed. Beginning with iteration 156, oscillations were 

observed in the value of the current I_ at the system output (graphs showing I_, ~0 s as functions of the number 

of iterations s are shown in Fig. 3), the amplitude of which decreases with further calculation, with 5 kA _< I_ _< 

7kA. 

Experiments performed on the "Tonus" high current relativistic accelerator revealed that at I§ = 20-30 

kA with the original metallic cylinder dimensions I_ = (6 • 0.6) kA [4]. In connection with this, one can choose 
established oscillations of I_ with a change in current amplitude of ~5-I0% as a criterion for completion of the 

numerical calculation. In particular, at iteration 233, I_ = 5.875 kA. 

Graphs characterizing the quantities p and �9 for such an output current are shown in Figs. 4 and 5. In 

the potential �9 we see (Fig. 4a) a sharp increase followed by a gradual decrease to some almost constant value. 

It should be noted that in obtaining the desired results the optimal approach was not used, i.e., one must 

keep in mind that the choice of the sequence of relaxation parameters w s was far from optimum, but rather 
was made to some extent intuitively. A large value of the parameter Ws leads to an increase in the current 

amplitude I_, to abrupt changes in the solution from iteration to iteration (with the exception of the case where 

the solution is close to the desired one); at low Ws there is a gradual change in I_, although this does not per- 
mit a conclusion as to the closeness of the intermediate solution to the desired one (this was noted in [5]). All 

this leads to slowing of the convergence of the iteration process. It is obvious that by using experience in solu- 
tion of a given problem, one can achieve convergence of the iteration process in a smaller number of iterations 
by selecting the parameter Ws in a definite manner [as proved to be th6 case when an attempt was made to 
solve the same problem again for the same value of input current (Fig. 6)]. Thus, we may conclude that the 
value of the relaxation parameter has a large effect on the rate of convergence of the iteration process. 
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Moreover, the selection of the initial approximation p0 affects the convergence rate. Therefore in solv- 
ing similar problems for other values of input current one should use available solutions of the same problem 
with input currents above critical. Then, considering the form of the relativistic electron beam space charge 
density function (see Fig. I), one should choose the tube dimensions to be nonuniform, decreasing them to the 
l i m i t s  of  t h e  b e a m .  

The authors express their gratitude to G. P. Fomenko and V. P. If'in for their valuable discussion of the 
study. 
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